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In this paper, a systematic inverse friction expansion treatment of the mobility of a Brownian particle
moving under a periodic potential and a constant bias is presented by considering the stationary solution
of the Fokker-Planck equation. By solving different orders of truncations of the infinite hierarchy of
equations equivalent to the Fokker-Planck equation and solving the infinite tridiagonal matrix, respec-
tively, explicit integral and series solutions are obtained.

PACS number(s): 05.40. +j

I. INTRODUCTION

The motion of a Brownian particle in a periodic poten-
tial under an external constant force has been widely in-
vestigated to explain the behavior of a variety of systems
of practical importance, such as the damped pendulum
[3], superionic conductor [4-8], Josephson tunneling
junction [9], phase locked loop [10], rotation of dipoles
driven by a constant field [11-15], and so on. One of the
main tasks in treating all these problems is the calcula-
tion of the averaged velocity or the mobility.

Let us consider the following Langevin equation:

mx+yx+f'(x)=F+T(z), (1.1)

where m,y,F are the mass of the particle, friction
coefficient, and the constant external force, respectively,
f(x) denotes the potential and —f'(x)=—df(x)/dx
represents the periodic force. The noise term I'(z) is
white in accordance with the assumption of a friction
proportional to the velocity,

(T(1))=0, (D(HT(t'))=2p8(t—1t"), (1.2)

where J=kzT is the thermal power and kz the

Boltzmann constant. With a suitable scaling, Ea. (1.1)
can be transformed to

X +yx+f(x)=F+T(),

where f (x)=f(x +2m).
Equation (1.3) corresponds to a Fokker-Planck equa-

tion (FPE),

(1.3)

9P (x,v,t) 3 d Y

—ar +—ax [vP(x,v,t)]+——av {[F—f"(x)]P(x,v,1)}
. oP
—y—av vP+1?——av , (1.4)

with v =x =dx /dt being the velocity.
Equation (1.4) can be simplified in various approxima-
tions. In the large friction limit, the thermal relaxation
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time is much shorter than the spatial diffusion time, thus
the two-dimensional FPE can be reduced to the Smolu-
chowski equation,

3P(x,1) _ 1 8 ..\ B 3’P(x,1)
Ty A SR FIPG SR

where P(x,t)= [ **P(x,v,t)dv is the distribution func-
tion for x. The stationary mobility of (1.5) can be easily
evaluated [1], i.e.,

1 —exp(—27F /9)

2
¥ 3°P(x,t) (1.5)

_ 27

K F QA—[1—exp(—27F /DA (1.6)
with u,v,w given by
Q=y fOZ”eXP[ﬂx)—Fx ldx |, (1.7)
A= [ Fexp[ —f(x)+Fxldx , (1.8)

A=y [dx exp[ —f (x)+Fx] [ explf (£)~F£1d§ .
(1.9)

In the low friction case, x and v become fast variables,
and the energy E=v2/2+f(x) or the action
I(E )2(277)_1§x dx becomes a slow variable, again a
one-dimensional FPE can be obtained after an adiabatic
elimination treatment [1]. Analytic results have been ob-
tained in this limiting case. Risken and co-workers [1,2]
have applied the matrix-continued-fraction method
(MCFM) to Eq. (1.4) and investigated the behavior of the
system for intermediate frictions by numerical computa-
tion. Rather few explicit expressions have been derived
to date for this intermediate range. The system (1.3) [or
equivalently, (1.4)] is a rather old model. However, fur-
ther investigation of this model is still significant if it
brings some new results, because this model has extreme-
ly wide applications and is very typical in noise and tran-
sportation problems.

In this paper, we will present a systematic and explicit
solution in inverse friction expansion on the basis of
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Risken’s MCFM. This paper is arranged as follows. Sec-
tion II gives a brief review of the MCFM as the starting
point of our analysis. In Sec. III, an integral treatment
for a general smooth periodic potential is given. The re-
sults of the first two orders are in agreement with those
obtained in Refs. [1,2]. In Sec. IV, we discuss a particu-
lar potential f(x)= —d cosx by applying an eigenvalue
expansion approach, and a series form of the solution is
provided. It is shown that both forms (the integral form
and the series form) are equivalent.

II. THE MCFM
In this paper, we discuss the stationary case, i.e.,
oP(x,v,t)/3t=0 , 2.1

where P(x,v) is a periodic distribution with respect to x.

mials [1], a hierarchy equivalent to the FPE (1.4) can be
given by

VnK~C,_;+nyC,+Vn+1K*C,,,=0, (2.3)
where n =0,1,2,..., o, and k 7,K ~ read

K*=v33/3x , (2.4a)

K =Kt+97 [ f(x)—F]. (2.4b)

Evidently, Cy(x)= f i:P(x,v)dv is the reduced distribu-
tion with respect to x, and C,(x)=Cis a constant. It can
be easily obtained that

(v)y=2mVSC, (2.5)
and the mobility is

By expanding P (x,v) in terms of ¥, (v), we have u=<{v )/F=1/1_9277TC . (2.6)
P(x,0)=%¥yv) ¥, C,(x)¥,(v), (2.2) A direct computation leads to [1]
n=0
_ =MC, , .
where W (0)=H, (v /V 3 )exp( —v2/43)/ Co=MC, @7
(n122V27r3)'/2, and the H,(x) are the Hermite polyno- where M is an operator-continued fraction, i.e.,
J
1 _
I— _1_2K + 1 I K
Y I———K*t K~ ’ (2.8)

M=—y(K)!

where (K 7 )7 ! denotes the inversion operator of K~ and
I is the unit operator. We can further expand C,(x) in
terms of the Fourier series,

C,(x)= 3 Cfe'™, (2.9)
a=—o
then C,(x) corresponds to a vector (---C, % -
CY---CZ--+), and M now is a matrix-continued frac-
tion, where K are matrices with the elements
(K1)¥B=iV3ad,g , (2.10a)
(K 7)B=(K )P~ 12F85+07 12 f'(x)]¥,
(2.10b)
01 =2m " [T xe P . (2,100

An explicit expression may be derived from the normali-
zation as

pu=92F 1 M%7, (2.11)
where MY is the element of M.

The above methods and expressions have been present-
ed and used for numerical computation by Risken and
co-worker [1,2]. Here, we take these results as the start-
ing point for our analytic study.

III. THE PERTURBATIVE INTEGRAL EXPRESSION

OF THE MOBILITY
By writing M in the form
M=—y(K ) 'H, (3.1)

Eq. (2.7) is transformed to

K ~Cy(x)=—yHC,(x) . 3.2)

From now on, we normalize 3=kzT=1 for simplicity.
Recalling C,(x)=C is constant and using

1
q(x)=—5yHCI(x) s (3.3)

we obtain a simple differential equation for the variation
of the reduced distribution function of x,

dCy(x)/dx +[f'(x)—F]Cy(x)=—Cq(x) . (3.4)
The solution is expressed by
C =Ke SO +Fx_cp—f)+Fx [ FE—FEge
olx)=Ke e fo q(&e £
(3.5)

The constants K and C may be derived in terms of the
normalization condition and periodic condition of C,(x),

e,
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K/C=e>fQ/(e*F—1), (3.6a)
KA—CA=1, (3.6b)
where Q,A, A are
2
— f(x)—de
Q f°z g(x)e X, (3.7a)
A——‘f Te S+ Fxgy s (3.7b)
%
— ™ —f(x)+Fx [* fE)—FE
A=[Tdxe S ae dg . (3.7¢)
Finally we obtain the mobility,
., —27F
~2r_ (0 e ) (3.8)

F QA—(1—e A

Then, we have an analytic expression for the mobility val-
id for arbitrary friction strength. Now the structure of
the solution of the mobility for arbitrary friction is clear,
it has exactly the same form as the overdamped result Eq.
(1.6), as it is posed in terms of three quantities that can be
computed by means of formulas very similar to
(1.7)=(1.9), i.e., to compute to any order single and dou-
ble integrals with integrands given explicitly, just as in
Eq. (1.6). The only difference from the overdamped case
is that in (3.8) a single renormalization function g(x)
should be considered which reduces to g(x)=y in the
overdamped case.

The remaining work is focused on the calculation of
the single kernel function g(x), which can be systemati-
cally derived by an inverse friction expansion. Because
the MCFM is valid for finite ¥, the expansion can be exe-
cuted to any order. We have to the first order

qg(x)=vy .
To order y ~!, we have
g0=y [I-Lk+k-|c/C,
Y
leading to

q(x)='y—%fm(x) : (3.9)
where f"(x)=d"f(x)/dx".

The expressions g(x)=y and (3.9) are in agreement
with the known results in Refs. [1] and [2]. However, we
can now proceed to higher orders, yielding the same ex-
pression for the mobility as (3.8), with renormalization
¢ (x) which is also easily obtained to any finite order. To
the next order y "3, we have

1

g(x)=y {I——K*K ™~ — 1
Y

— (KK ) {Cy(x)/C,
2y

leading to
1
(x)=y——f%x)
q 14 yf
—571/—3{f“”(x)+2[f‘”(x)—F]f(3’(x)

+2[f D%} . (3.10)

There is no difficulty in systematically representing q(x)
in higher orders by computing derivatives only.

IV. THE MOBILITY FOR COSINE CASE:
A SERIES EXPRESSION

For the cosine potential,

f(x)=—d cosx , 4.1)
the matrix K~ becomes a tridiagonal one,
_ _ . ] id
(K=" {iad—F)8 g+ 08, 5 1 =228, 5.,
4.2)

In Eq. (3.1), the matrix-continued fraction H may be ex-
panded with respect to ¥ ~!. The first few terms are writ-
ten as

H=H,+H,+H,+H,+H,+ -, (4.3)
Hy=I, (4.3b)
H=—LSK'K™, (4.30)
¥
Hy=——— (K" K7, (4.3d)
2ly
_ 1 +y3 g 1 YRR VK2
Hy=—— (k&= (K KKK,
== g s K e (K
(4.3e)
—__1 a4 —yd_ 1 Fyw -k VR~
Hy= = KK ) = o S (KK KK )
— (K )K KK R
2%y
—— L (kKKK TR KPR
2X2X3y
1

————— (KHAKFTK K TKT)K ).
2X2X3y

(4.31)

Now the main difficulty in computing (3.1) lies in evaluat-
ing the inverse (K ~)~!. In the appendix, the analytic
and explicit solution for the inverse of the infinite tridiag-
onal matrix K~ is given in a completely closed form.

The result reads
172

F/d0+in

[(K~)~l]kj=__ i (_1)k+n

n=-—o

XTI nd /D, ,(d /),  (4.4)

where i denotes the imaginary unit and I,(x) is the
modified Bessel function. Considering both Egs. (4.3) and
(4.4), we can reproduce the solution of M to any order in
the inverse ¥ expansion. Therefore, we can expand the
mobility in the form

A, }“

2 @.5)
,}/ZL 1

w=

)
2
L=0
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where the factor 4; reads
L
AL=_F19_1/2 2 laI{[(K_)_I]OI}
=—L
—F37'2[(K7)71%® for L=0;

L
—2F3 23 Re [a{[(K‘)“]"’] for L>0.
=1

(4.6)

Here Re takes the real part, a} are given by the multipli-
cation of the matrices K+ and K~. The first few
coefficients are given as follows:

L=0, ad=1,
L=1, a;'=[al]l=d/2,
L=2, a;'=[al]=—d(8—2iF)/4,

L=3, a;'=[a3]=—d(12F*—59*+3d3+15iF8)/24 ,

—iF(F*—149%/9+d?)],

a;?=[a=dX11F2/2+d*— 65997 /72
+111iF3/8),
ad=[adl=—9d3(579—32iF) /32 ,

a;t=[a}]=—1d*/2, 4.7)

where [a] ] denotes the complex conjugate of a ;. Higher
order coefficients a} can also be successively obtained. It
can be verified that the results (4.5) and (3.8) are
equivalent for the cosine potential. Both solutions have
their own advantages. Equation (3.8) is valid for arbi-
trary periodic potentials while Eq. (4.5) is valid only for
the cosine potential. The series expression for a system
with an arbitrary periodic potential may be rather com-
plicated. On the other hand, the series form of (4.5) is
easier for numerical computation than that of (3.8). In
the next section, we present numerical results based on
Eq. (4.5).

V. NUMERICAL RESULTS

Taking the widely used cosine potential case as an ex-
ample, we show, numerically, the results obtained in Sec.
IIT and IV. The mobility may also be expressed in the
following form [2] :

3 5 7 9

—B,y%— .-
(5.1)

r=Boy'—=B1y =B,y ’—Byy~

with
B,=1/4,, B,=A4,/4},
B,=(A,A,— A2)/ A},
By;=(A3A3—2A,A4,Aq+ A})/ 4%,
B,=(A,A}—2A4;A4,4%
+34,A24,— A3A3— A /45, ..,

(5.2)

where A; are given in (4.6) and (4.7).

We plot yu to the first three orders against the external
force F with d=1.0 and 4=1 in Fig. 1 (y=5.0) and
Fig. 2 (y =2.0). We find that for ¥ =5.0, the first order
approximation is already very good and other orders give
results without visible differences. In Fig. 2, for smaller
v, the corrections of higher orders become important,
especially in the larger F region. However, even for not
too large v, the analytic results obtained in Sec. III and
Sec. IV are also useful, and the first few terms may al-
ready be enough to produce rather accurate results.

In Figs. 3-5, we plot the first three coefficients B;
against the barrier height d at ¢=1.0 and
F=4.0,3.0,2.0,1.0, and 0.5, respectively. In Fig. 3, B,
decreases to O as d increases, indicating that particles es-
cape less easily from a deep potential well. An interesting
point is that there is a peak for B, and a valley for B, for
the response curves, as shown in Figs. 4 and 5. This indi-
cates complicated behavior of the mobility yu at
moderate and small ¥ due to the competition of the
periodic potential (d), external force (F), and random
noise (temperature ). However, the detailed features
and their mechanism, and the radius of convergence of
the expansion are still unknown.

lie?

0.9

0.8

0.7

F

0.6

FIG. 1. Mobility multiplied by the friction yu vs the external
force F. y=5.0, d=3=1.0, and the curves 1, 2, and 3
represent the approximations up to orders ¥, ¥ !, and y 3, re-
spectively. The good fit to the first order approximations is ob-
vious. Curves 2 and 3 cannot be distinguished. The quantities

in this figure and all the following figures are dimensionless.
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0 1

FIG. 2. yu vs F, y=2.0,and d=7=1.0. Curves 1, 2, and 3
have the same meanings as in Fig. 1. The corrections of higher
orders become important.

BO 1.0

0.8

0.6

0.2

0.0 d

0 1 2 3 4 5

FIG. 3. The expansion coefficient B plotted against the bar-
rier height d. 9=1.0, curves 1, 2, 3, 4, and 5 correspond to
F=4.0, 3.0, 2.0, 1.0, and 0.5, respectively.

B 1 0.6 T T T T

0.5 |- 2 .

0.4 4 -

0.3 r .

0.2 B

0.0 1 L i )
0 1 2 3 4 5 d

FIG. 4. The same as Fig. 3 with B, replaced by B;.

O T T
Be ' '
5
4
_’}_ .
3
_2_ h
2
1
._3_ -
4 I ! I L
0 1 2 3 4 5d

FIG. 5. The same as Fig. 3 with B, replaced by B,.
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APPENDIX
In order to compute the inverse of the matrix,

(K~ V9=(ipa—b)8,, +ih8, , ,—ihd

pa—1s (A

we need to know the eigenvalues and eigenfunctions of
K 7. Generally, K~ is not Hermitian, so we should find
the biorthogonal set of K~. We write the right eigen-
functions in the form

In)=("'c,,_q"'c,?"'c,‘{'--)T, (A2)
and the left ones

(n|=(--~an_q'--a,?"°a,?"'). (A3)
Then the eigenequations read

K7 |n)=1,ln), (Ada)

(n|K~=Ar,{(n]|, (A4b)

with A, being the corresponding eigenvalues.
First, we solve the right eigenfunctions. For the g-th
component, we have

(iag—b—A, )ci+ihci ' —ihci =0, (A5)

where a =312, b=F98 /2, and h=—0.5d9~ /2. Intro-
ducing the generating function

gR(s)= 3 cis?, (A6)
q =—00
we obtain a partial differential equation

. de Ry ;(pe—1 R—
fas— —(A,+b)g, +ilhs™ " —hs)g, =0, (A7)

which has the solution



114 ZHIGANG ZHENG AND GANG HU 52

(A, +b)/ia
g’fi(s)_____eh/a(s-l—l/s)s n . (A8)

A complete set of eigenvectors can be constructed by set-
ting (A, +b)/ia to integer numbers, which leads to

A,=—b+ina , (A9)

where n=—o0,...,1,0,1,..., . Thus |#n ) can be ob-
tained such that the component c¢? is identified to the
coefficient of 57 in the power expansion of gR(s). In fact,
¢ can be provided directly by expanding

eh/a(s+1/s)= 2 Cnsn , (A10)

n=— o
and identifying ¢, to ¢, _,.
The same procedure may be applied to the left eigen-
function, and finally we obtain

gr{,(s):e—h/a(s+l/s)sn ] (A11)
Similar discussion also leads to
al=a,_, , (A12)

where @, is the expansion coefficient of e ~#/2s+1/5) with

respect to s”.

Thus |n),{n| form a biorthogonal set. The function
e*5T1/9) is the generating function of the modified Bessel
function I,(x), i.e.,

ex(s+1/s)= i In(X)Sn ,
where I,(x)=37—o[1/k!T(k +n+1)](x/2)"*?, and
T(k +n +1)=(n +k), the ¥ function. It can be verified
that

(A13)

B+2 3 (—1)2x)=1.

n=1

(A14)

Therefore, the normalization condition 37— _ ,a,c,=1
is satisfied and the biorthogonal relation of eigenvalues
|m ) and (m| may be expressed by

(nlm)= 3 cna,=8,, .

nh=—o0

(A15)

Any infinite matrix can be expanded on the basis of the
biorthogonal set |n ) and (n|. For K~ and (K )7}, we
have

K™= 3 Adn)(nl, (A16)
(K)y7'='3 ~1~|n><n| . (A17)
n=—ow )\’n
Therefore, the element of (A17) is
(K)"pr= 3 %(pln)(nlq) . (A18)
n=—ow n
In terms of (A9) and (A13), we get, finally,
_ hd 1
(K l)pq:nzw—_—bmlp_nuh/a)]q_n(—2h/a) ,
(A19)
leading to Eq. (4.4). It can be verified that
(K~ 'ya=(K~H)™P74, (A20)

where the bar on the top indicates the imaginary conjuga-
tion.
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